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The Big Questions

 How do disks transfer angular momentum
to deliver gas onto compact objects?

« How do accretion disks launch winds and
jets?

— From the “Fundamental Accretion
and Ejection Astrophysics” Astro2010
White Paper, Miller et al.
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The Big Questions

 How do disks transfer angular momentum
to deliver gas onto compact objects?

« How do accretion disks launch winds and
jets?

 \What recommendations will the Astro2010
panel make?

— Mostly from the “Fundamental
Accretion and Ejection Astrophysics”
Astro2010 White Paper, Miller et al.
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The Accretion Continuum

1. Protostars (CTTS)
2. White Dwarfs

3. X-ray Binaries (w/ Neutron
Stars)

4. Black Hole Candidates

5. Active Galactic Nuclei
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Spectra are the Key
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Spectra are the Key
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“’’S" New Picture of Accretion

Accretion-Fed Stellar Wind?

Accreting Material
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“' TW Hya with Astro-H
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The Accretion Continuum

1. Protostars (CTTS)
2. White Dwarfs

3. X-ray Binaries (w/ Neutron
Stars)

4. Black Hole Candidates

5. Active Galactic Nuclei
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Type la Progenitors

* “A clearer understanding SNla progenitors
can help address the significant (£0.6 mag
in V) scatter in the raw peak absolute
magnitudes of SNla. ...future use of SNla
for precision cosmology...requires that we
further reduce any systematic effects.

" (Mukai et al. 2010)

* Must find Massive White Dwarf

binary systems.
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WDs

Finding Masswe Whlte Dwarfs

Muka/ et al. 2010
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Hard X-ray bright non-magnetic white dwarfs may be the key —
easy to find with hard X-ray surveys, and the redshift is...




International X-ray Observatory [ [>X(J]

WDs
Finding Massive White Dwarfs
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The Accretion Continuum

1. Protostars (CTTS)
2. White Dwarfs

3. X-ray Binaries (w/ Neutron
Stars)

4. Black Hole Candidates

5. Active Galactic Nuclei
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It's Hard to be Bright

« XRB exhibit a wide range of luminosities

* Alimitation has been the difficulty of doing
both timing and spectral studies

simultaneously, due to lack of instrumental
range.

— Reverberation Mapping
— QPOs matched to iron lines
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Reverberations

Power-law continuum varies first, followed by reflection
thermally-reprocessed emission

Path-length difference defines intrinsic lag. Observed lag
IS the intrinsic lag diluted by the ratio of continuum to
reverberating emission

Courtesy P. Uttley
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Reverberations

The delayed response | ' T

of the reprocessed disk |

line relative to the QPO | W ﬂ
variations sets the -

characteristic ‘size’ of
the system.

me delay (msec)
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Linking QPOs and lines

Measuring the Keplerian frequency and radius vyields Mns and
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The Accretion Continuum

1. Protostars (CTTS)
2. White Dwarfs

3. X-ray Binaries (w/ Neutron
Stars)

4. Black Hole Candidates

5. Active Galactic Nuclei
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oHes Accelerating Winds

Magnetically-driven Radiative-driven

Dense, clumpy winds, with Smooth less dense winds
significant rotation as they that primarily show outflow
originate near the BH velocity.




International X-ray Observatory [ [>X(J]

log(NH) ~ 23.6-23.9
< A log(§) ~4.8-53 |
> 04f ~ M, | log(re) ~ 4.7 -9.3
S Y TSy [
S~ 2 """&L
s " ! ‘ YA iy o "
N> | 1, ) |
502[ | . 1 ‘ "“"v““
L

085 9 o5 10 105 11 115 12

Wavelength (A)

Miller et al. (2008)

Photoionization models require densities 103x and distances
less than 1/10% of what radiative and thermal scenarios predict;
magnetic models can fit the results, albeit not perfectly.
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oHes BHC - GROJ1655

- IXO - the game changer

S lunliilinlun
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Polarization
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Polarization observations can accurately determine the spin/mass (a/M)
ratio for a typical Galactic BH binary. A 100 ksec XPOL observation will
make energy-resolved measurements each sensitive to ~0.5% (30), easily

separating these models.




Gravity and Extreme
Magnetism SMEX

A GEMS observation of a stellar
mass black hole in the thermal state
can measure expected
dependences on angular
momentum

 Short observations (30 ksec) will
be capable of detecting 1%
polarization in 2-4 keV and 4-8 keV
bands

* In the case of hard state black
holes, GEMS will be able to test for
the combined effects of spin and
coronal geometry

International X-ray Observatory [ [>X(J]

GEMS GEMS observations constrain black hole spin
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The Accretion Continuum

1. Protostars (CTTS)
2. White Dwarfs

3. X-ray Binaries (w/ Neutron
Stars)

4. Black Hole Candidates

5. Active Galactic Nuclei
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AGN
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Conclusions

* The approved missions Astro-H and
GEMS will open up the high-resolution Fe

K and X-ray polarization studies,
respectively.

 [XO will entirely revolutionize the field

— Sources we study today with grating spectra
will have time-resolved grating spectra

— Will have 3 ORDERS OF MAGNITUDE more

“area x resolution” product than currently
available.
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X-ray and Planetary Disks

How do X-rays influence planet formation in

protoplanetary disks?
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